Dynamic control of strand excision during human DNA mismatch repair.
نویسندگان
چکیده
Mismatch repair (MMR) is activated by evolutionarily conserved MutS homologs (MSH) and MutL homologs (MLH/PMS). MSH recognizes mismatched nucleotides and form extremely stable sliding clamps that may be bound by MLH/PMS to ultimately authorize strand-specific excision starting at a distant 3'- or 5'-DNA scission. The mechanical processes associated with a complete MMR reaction remain enigmatic. The purified human (Homo sapien or Hs) 5'-MMR excision reaction requires the HsMSH2-HsMSH6 heterodimer, the 5' → 3' exonuclease HsEXOI, and the single-stranded binding heterotrimer HsRPA. The HsMLH1-HsPMS2 heterodimer substantially influences 5'-MMR excision in cell extracts but is not required in the purified system. Using real-time single-molecule imaging, we show that HsRPA or Escherichia coli EcSSB restricts HsEXOI excision activity on nicked or gapped DNA. HsMSH2-HsMSH6 activates HsEXOI by overcoming HsRPA/EcSSB inhibition and exploits multiple dynamic sliding clamps to increase tract length. Conversely, HsMLH1-HsPMS2 regulates tract length by controlling the number of excision complexes, providing a link to 5' MMR.
منابع مشابه
Single gene complementation of the hPMS2 defect in HEC-1-A endometrial carcinoma cells.
Results from the analysis of human tumor cell lines with mutations in DNA mismatch repair genes have contributed to the understanding of the functions of these gene products in DNA mismatch repair, microsatellite instability, cell cycle checkpoint control, transcription-coupled nucleotide excision repair, and resistance to cytotoxic agents. However, complementation of human DNA mismatch repair ...
متن کاملDna Repair
1. DNA Damage 1.1. Spontaneous Alterations of DNA (by Mutator Genes) 1.2. Environmental Damage to DNA 2. DNA Repair by Reversal of Damage Without Excision 2.1. Photoreactivation 2.2. Repair of O-Alkylguanine and Alkylthymine Without DNA trand Excision 3. Base Excision Repair in Non-Mammalian Cells 3.1. DNA Glycosylase in Non-Mammalian Cells 4. Base Excision Repair in Mammalian Cells 4.1. DNA Gl...
متن کاملHuman DNA mismatch repair: coupling of mismatch recognition to strand-specific excision
Eukaryotic mismatch-repair (MMR) proteins MutSalpha and MutLalpha couple recognition of base mismatches to strand-specific excision, initiated in vivo at growing 3' ends and 5' Okazaki-fragment ends or, in human nuclear extracts, at nicks in exogenous circular substrates. We addressed five biochemical questions relevant to coupling models. Excision remained fully efficient at DNA:MutSalpha rati...
متن کاملMolecular Mechanisms of PARP Inhibitors in BRCA-related Ovarian Cancer
Abbreviations: PARP: Poly(Adp-Ribose) Polymerase; SSBS: Single Strand Breaks; DSBS: Double Strand Breaks; BER: Base Excision Repair; NER: Nucleic Acid Excision Repair; MMR: Mismatch Repair; HR: Homologous Recombination; NHEJ: Non-Homologous End Joining; DNA-PKCS: DNA-Dependent Protein Kinase; ORR: Objective Response Rate; PFS: Progression-Free Survival; PLD: Pegylated Liposomal Doxorubicin; OS:...
متن کاملDNA template requirements for human mismatch repair in vitro.
The human mismatch repair pathway is competent to correct DNA mismatches in a strand-specific manner. At present, only nicks are known to support strand discrimination, although the DNA end within the active site of replication is often proposed to serve this role. We therefore tested the competence of DNA ends or gaps to direct mismatch correction. Eight G.T templates were constructed which co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 12 شماره
صفحات -
تاریخ انتشار 2016